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SUMMARY

Difficulties for the conventional computational fluid dynamics and the standard lattice Boltzmann method
(LBM) to study the gas oscillating patterns in a resonator have been discussed. In light of the recent
progresses in the LBM world, we are now able to deal with the compressibility and non-linear shock wave
effects in the resonator. A lattice Boltzmann model for viscid compressible flows is introduced firstly. Then,
the Boltzmann equation with the Bhatnagar–Gross–Krook approximation is solved by the finite-difference
method with a third-order implicit–explicit (IMEX) Runge–Kutta scheme for time discretization, and
a fifth-order weighted essentially non-oscillatory (WENO) scheme for space discretization. Numerical
results obtained in this study agree quantitatively with both experimental data available and those using
conventional numerical methods. Moreover, with the IMEX finite-difference LBM (FDLBM), the compu-
tational convergence rate can be significantly improved compared with the previous FDLBM and standard
LBM. This study can also be applied for simulating some more complex phenomena in a thermoacoustics
engine. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The thermoacoustics can be simplistically defined as the physics of the interaction of thermal and
acoustic fields [1]. In recent years, the thermoacoustics has been attracting more and more attentions
as a major technology in the development of more efficient energy conversion/generation systems.
However, the non-linear acoustic effects, the coupling between acoustic and thermal effects, the

∗Correspondence to: Yaling He, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy
& Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China.

†E-mail: yalinghe@mail.xjtu.edu.cn

Contract/grant sponsor: National Natural Science Foundation of China; contract/grant numbers: 50425620, 50736005

Copyright q 2008 John Wiley & Sons, Ltd.



854 Y. WANG ET AL.

space and time multi-scale effects and the flows with porous medium in the thermoacoustics engines
make it very complicated in theory. At the same time, it is also difficult to simulate performance
of the thermoacoustics engines even for modern computer with the conventional computational
fluid dynamics.

Taking the resonator for example, which is one of the most fundamental and important compo-
nents in the thermoacoustics engines, considering a resonator driven by an oscillating plane piston
at one end in the neighborhood of the fundamental resonant frequency of the gas column, peri-
odic shock waves can be found traveling back and forth along the resonator with a frequency
equal to that of the oscillating piston and velocity close to that of sound [2, 3]. As a result of the
shock waves and oscillating flows, the heat and mass transport in a resonator can be enhanced
dramatically compared with those beyond the resonant band. The understanding of gas oscillations
in a resonator is of both fundamental and practical interest, and information about theoretical
and experimental studies can be found in Ilgamov et al.’s review [4] and the references therein.
However, there are a few published numerical simulations about this problem. This is because the
appearance of the non-linear shock waves in resonant oscillations and the small Ma number of the
gas flow require a high-resolution numerical scheme and a large computing resource. Moreover,
most of these conventional simulations are restricted to solve just one-dimensional non-linear wave
equations [5–8]. Recently, enumerable progresses with two-dimensional simulations are carried
out. Alexeev and Gutfinger developed a two-dimensional numerical model for turbulent gas oscil-
lations and studied the turbulence and acoustic streaming in a resonator with l/L�0.00597 [3].
Here l and L are the oscillatory amplitude of the oscillating plane piston and the length of the
resonator, respectively. Tang and Cheng solved the two-dimensional laminar gas flow in a cylin-
drical resonator with l/L=0.00186 by a new finite-volume method with a second-order kinetic
flux-vector splitting scheme for convective terms and a third-order Runge–Kutta method for the
time evolution [9]. However, no quantitative comparison with previous results from experiment or
numerical simulation was performed in their study.

The lattice Boltzmann method (LBM) is an alternative and promising numerical approach for
studying the thermoacoustic problems. The LBM is different from the conventional numerical
methods solving the macroscopic governing equations, e.g. Navier–Stokes (NS) equations for the
conserved fields. Based on the kinetic theory, the LBM simulates fluid flows by tracking the
evolution of particles taking on a few discrete velocities in discrete space at discrete time steps. It
can easily model fluid flows with complicated boundary conditions. This means the LBM provides
a method to obtain flow streams and heat transfer patterns for complicated systems from the
microscopic and kinetic level [10–13]. On the basis of such viewpoint, we adopted the LBM to
study phenomena systematically in a thermoacoustic engine. Our previous effort in this field can
be found in Reference [14], in which we tried to simulate the two-dimensional gas oscillation
in a resonator by the standard LBM. Here, ‘standard’ means the LBM is governed by the lattice
Boltzmann equation with the Bhatnagar–Gross–Krook (BGK) approximations and evolved with
streaming-collision procedure [15, 16]. Qualitative agreement between our numerical results and
those using conventional numerical methods was obtained. However, due to the shortcomings of
the standard LBM, such as its incompressible essentiality and lower convergence rate, quantita-
tive agreement is limited even though the computations were carried out with high-performance
computers.

Fortunately, in light of the recent progresses in the LBM world, we are now able to deal with
the compressibility and non-linear shock wave effects in a resonator. We provide a brief review of
these progresses as the following two sides.
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Various LBM models have been developed for compressible flow. The standard LBM is virtually
regarded as a ‘pseudo-compressibility method’ [17]. Using the Chapman–Enskog expansion, the
lattice Boltzmann equation in the standard LBM can yield the incompressible NS equations with
additional terms that are of order Ma number squared. To breach this limit, several scholars
developed LBM models that can recover the compressible Euler equations [18–20]. Alexander
et al. [21] and Chen et al. [22] proposed LBM models for the compressible NS equations.
However, the specific heat ratio � in the previous models for the compressible NS equations
cannot be chosen freely and is fixed at unphysical values. Subsequently, Kataoka and Tsutahara
[23] developed a compressible NS model with a multi-speed lattice that overcomes the above
defects. In their study, a variable about the rest energy, which comes from the internal motion of
molecules, is introduced to satisfy the dissipation relation of energy and control the specific heat
ratio. Numerical examples showed that their model could work well under the condition when Ma
number is less than 1.0. Most recently, the rest energy is also used to adjust specific heat ratio in
Reference [24].

On the other hand, some techniques to accelerate LBM are developed. Since the LBM can be
regarded as a discrete velocity method for the Boltzmann equation with the BGK approximation,
it is not surprising that there is a trend in the LBM world to use the finite-difference method
[16, 17, 23, 25–34], the finite-volume method [24, 35–38] and the finite-element method [39] to
improve the computational efficiency and accuracy. In the finite-difference LBM (FDLBM), the
streaming-collision procedure in the standard LBM is replaced by the combination of finite-
difference schemes for the convection term in the Boltzmann equation and step advancements in
time. However, although fewer time steps are needed in the FDLBM than those in the standard LBM,
because of some improved measures, such as using non-uniform meshes, the convergence rate in
the FDLBM is still limited [34], especially in the case when the hyperbolic system described by
the BGK Boltzmann equation is stiff (relaxation time much smaller than the time scale determined
by the characteristic velocities of the system). To overcome such a flaw, we have proposed an
implicit–explicit (IMEX) FDLBM in Reference [34]. Therein, we combined the IMEX Runge–
Kutta scheme with the FDLBM. The relaxation term of the BGK Boltzmann equation is treated
implicitly and the convection term explicitly. Thanks to the characteristic of the collision invariants
in the LBM, no iteration is needed in practice. In other words, the implicitness is completely
eliminated although the IMEX Runge–Kutta scheme is used. Numerical results of tests showed
that the IMEX FDLBM can solve problems accurately and efficiently.

In this study, the LBM model derived by Kataoka and Tsutahara for the compressible NS
equations is adopted to treat the compressible gas flows in a resonator. In order to overcome
the shortcomings of the standard LBM mentioned above, the IMEX FDLBM is considered.
Because of the high-order schemes and the compressible LBM model used in this study, quan-
titative agreement with both experimental data available and those using conventional numerical
methods is obtained. More clear shock waves compared with those from the standard LBM are
also observed. This is a part of an effort to study the thermoacoustic phenomena with the recent
progresses of the LBM. This paper is organized as follows. In Section 2, details of the model
for viscid compressible flows used in this study are introduced. In Section 3, a brief descrip-
tion of the IMEX FDLBM is given. In particular, the third-order IMEX Runge–Kutta scheme is
adopted for time discretization, and the fifth-order WENO scheme is adopted for space discretiza-
tion. In Section 4, the physical model of the resonator and the results obtained from the IMEX
FDLBM simulations are presented. Finally, in Section 5, a brief conclusion of the present study is
given.
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2. COMPRESSIBLE LBM MODEL

The present study uses the LBM model originally derived by Kataoka and Tsutahara for the
compressible NS equations with a flexible specific heat ratio [23]. The evolution equation of the
physical field is the BGK Boltzmann equation:

� fi
�t

+ci ·∇ fi =− fi − f eqi
�

(1)

where fi (i=1,2, . . . ,N;N is the total number of discrete particle velocities) is the particle
density distribution function; t is the time; ci is the discrete particle velocity along the i th direction;
f eqi is the local equilibrium distribution function and � is the relaxation time.
A two-dimensional version of this model with a multi-speed lattice (see Figure 1, N=16,

�=1,2) is given as

(ci1,ci2)√
RT0

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cyc :(±1,0) for 1�i�4

cyc :(±6,0) for 5�i�8
√
2(±1,±1) for 9�i�12

3√
2
(±1,±1) for 13�i�16

(2)

�i√
RT0

=
{

5
2 for 1�i�4

0 for 5�i�16
(3)

where ci� is the � component of ci ; �i is a variable introduced to control the specific heat ratio;
cyc indicates the cyclic permutation; R is the specific gas constant and T0 and

√
RT0 are the
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Figure 1. Multi-speed lattice of Kataoka and Tsutahara’s model [23].
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characteristic temperature and velocity of the system, respectively. f eqi is defined as a function of
macroscopic density �, velocity in � component u�, temperature T as

f eqi = �[a0i +a1i T̄ +a2i T̄
2+(a3i +a4i T̄ )ū2�+a5i ū

2
�ū

2
�+(b0i +b1i T̄ +b2i ū

2
�)ū

2
�c̄

2
�

+(d0i +d1i T̄ +d2i ū
2
�)ū

2
�c̄

2
�ū

2
�c̄

2
�+ei ū

2
�ū

2
�ū

2
�c̄

2
�ū

2
�c̄

2
�] (i=1, . . . ,16; �,�,�=1,2) (4)

where the coefficients a0i , . . . ,ei are the given constants (see Table I); the variables with a bar in
Equation (4), such as T̄ and ū�, are the non-dimensional quantities with the characteristic ones
mentioned above.

The macroscopic variables �,u� and T are defined in terms of fi as

�=
N∑
i=1

fi , �u� =
N∑
i=1

fi ci�, �(bRT +u2�)=
N∑
i=1

fi (c
2
i�+�2i ) (5)

where b is a given constant related to specific heat ratio � with �=(b+2)/b. We specially denote
the collision invariants 	≡(1,ci�,c2i�+�2i ) in Equation (5). Moreover, transport coefficients are
given by


=�RT �, 
B=2( 13 −1/b)�RT �, �=(b+2)�R2T �/2 (6)

Table I. The coefficients a0i , . . . ,ei (i=1,2, . . . ,16) in the local equilibrium
distribution function f eqi given by Equation (4) [23].

i 1–4 5–8 9–12 13–16

a0i 0 1
96

81
160

−4
15

a1i
b−2
25

−121b−408
86400

−229b+8
3200

89b+222
2700

a2i 0 b+2
1728

b+2
320

−b−2
270

a3i
−36
115

−799
397440

−117
640

−13
135

a4i
b+4
115

19b+306
397440

9b+38
640

−2b−9
270

a5i
1
115

19
397440

9
640

−1
135

b0i 0 0 9
40

−2
45

b1i
2(b−2)

25
−2b+29
32400

−14b+3
400

2(7b+11)
2025

b2i 0 −1
2592

1
80

−7
810

d0i
72
115

−29
298080

9
160

−2
405

d1i
−2(b+4)

115
b+4
74520

−b−4
160

b+4
810

d2i
−2
115

−2
74520

−1
160

1
810

ei 0 1
46656

−3
320

8
3645
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where 
,
B and � are the dynamic viscosity, the bulk viscosity and the thermal conductivity,
respectively. It should be noted that � in this model is also a function of � and T , which is different
from the standard LBM model with a constant relaxation time. Furthermore, in order to resolve
the relaxation time in this model, �t should be smaller than �, such as �t=�/10 for unsteady
flows. If the condition that Knudsen number �=�(�0,T0)

√
RT0/L0�1 (L0 is the characteristic

length of the system) is satisfied, the compressible NS equations can be derived from Equation (1)
through the Chapman–Enskog expansion.

3. FORMULATION OF THE IMEX FDLBM

In the IMEX FDLBM, the so-called IMEX Runge–Kutta scheme, which solves the relaxation
term (the right-hand side) of Equation (1) implicitly while other terms explicitly, is adopted for
the time discretization [34]. The corresponding finite-difference schemes are adopted for space
discretization. Owing to the characteristic of the collision invariants in the LBM, the implicitness
can be completely eliminated, and thus no iteration is needed in practice. In this manner, problems
(no matter stiff or not) can be integrated quickly with moderate Courant–Friedrichs–Lewy (CFL)
number, which is defined as CCFL=�t ·max{ci1,ci2}/min{�x,�y} (�t is the time spacing; �x
and �y are the mesh spacing steps in x- and y-directions, respectively). Here we give a brief
formulation of the IMEX FDLBM, and more details can be found in Reference [34].
3.1. Time discretization

To advance the distribution function fi from time level n to n+1 in Equation (1) by the IMEX
Runge–Kutta schemes, the following computations are conducted:

N∑
i
f ( j)
i 	=

N∑
i
f ni 	−�t

j−1∑
k=1

m̃ jk

[
N∑
i

(ci ·∇ f (k)
i )	

]
(7)

f ( j)
i = f ni −�t

∑ j−1
k=1 m̃ jk(ci ·∇ f (k)

i )+�t
∑ j−1

k=1m jk( f
eq(k)
i − f (k)

i )/�(k)+(�t/�( j))m j j f
eq( j)
i

1+(�t/�( j))m j j
(8)

and

f n+1
i = f ni −�t

r∑
j=1

ñ j (ci ·∇ f ( j)
i )+�t

r∑
j=1

n j
f eq( j)i − f ( j)

i

�( j)
(9)

where f ()
i , f eq()i , �() and j are the stage distribution function, the stage local equilibrium distribution

function, the stage relaxation time and the stage number, respectively. The two r×r matrices M̃=
(m̃ jk) (m̃ jk =0 for k� j) and M=(m jk) (m jk =0 for k> j) and the two vectors ñ=(ñ1, . . . , ñr )T

and n=(n1, . . . ,nr )T characterize the IMEX Runge–Kutta schemes.
In summary, the updating rule of the variables is given as (i) with Equations (5) and (7), the j th

stage macroscopic variables, such as �( j), u( j)
� and T ( j), can be calculated from f ()

i of the previous

stages; (ii) the corresponding f eq( j)i and �( j) of the current stage are updated with Equations (4)

and (6); (iii) with Equation (8), f ( j)
i of the current stage is calculated and (iv) after all the stages

are carried out, we advance the distribution function f ni to the next level f n+1
i with Equation (9).
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Table II. Tableau for the third-order IMEX Runge–Kutta scheme with four stages.

0 0 0 0 m11 0 0 0
0 0 0 0 −m11 m11 0 0
0 1 0 0 0 1−m11 m11 0
0 1

4
1
4 0 m41 m42

1
2 −m11−m41−m41 m11

0 1
6

1
6

2
3 0 1

6
1
6

2
3

m11=0.24169426078821, m41=0.06042356519705, m42=0.12915286960590.

Moreover, the IMEX Runge–Kutta schemes can also be represented by a double Butcher’s
tableau as follows:

M̃

ñ

M

n

The coefficients of a third-order IMEX Runge–Kutta scheme with four stages [34] used in this
study are given in Table II.

3.2. Space discretization

In this study, the fifth-order WENO scheme [34, 40] is adopted for the space discretization. In
consideration of the x-component of the convection term ci ·∇ fi in Equations (1) and (7)–(9), we
give details of this scheme as

�(ci1 fi )

�x
= 1

�x
(

�

Fi,I+1/2,J − �

Fi,I−1/2,J ) (10)

where
�

Fi,I+1/2,J is the numerical flux at the interface of xI +�x/2 (I and J are node indexes)
and is defined as

�

F i,I+1/2,J =w1
�

F 1
i,I+1/2,J +w2

�

F 2
i,I+1/2,J +w3

�

F 3
i,I+1/2,J (11)

Under the condition ci1�0, three third-order fluxes on three different stencils
�

F q
i,I+1/2,J (q=1,2,3)

are given by
�

F 1
i,I+1/2,J = 1

3 Fi,I−2,J − 7
6 Fi,I−1,J + 11

6 Fi,I,J (12a)

�

F 2
i,I+1/2,J =− 1

6 Fi,I−1,J + 5
6 Fi,I,J + 1

3 Fi,I+1,J (12b)

and
�

F 3
i,I+1/2,J = 1

3 Fi,I,J + 5
6 Fi,I+1,J − 1

6 Fi,I+2,J (12c)

where Fi,I,J =ci1 fi,I,J .
The weighting factors wq in Equation (11) are given by

wq = w̃q

w̃1+w̃2+w̃3
, w̃q = 
q

(10−6+�q)2
(13)
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with 
1= 1
10 , 
2= 3

5 and 
3= 3
10 . The small value 10−6 is added to the denominator to avoid being

divided by zero. The coefficients �q in Equation (13) are the smoothness indicators and can be
obtained by

�1= 13
12 (Fi,I−2,J −2Fi,I−1,J +Fi,I,J )

2+ 1
4 (Fi,I−2,J −4Fi,I−1,J +3Fi,I,J )

2 (14a)

�2= 13
12 (Fi,I−1,J −2Fi,I,J +Fi,I+1,J )

2+ 1
4 (Fi,I−1,J −Fi,I+1,J )

2 (14b)

and

�3= 13
12 (Fi,I,J −2Fi,I+1,J +Fi,I+2,J )

2+ 1
4 (3Fi,I,J −4Fi,I+1,J +Fi,I+2,J )

2 (14c)

Similarly, under the condition ci1<0, a mirror image procedure (with respect to I + 1
2 ) of the

procedure from Equations (12) to (14) can be carried out. For two-dimensional problems, this
scheme should be applied in both x- and y-directions.

4. NUMERICAL RESULTS AND DISCUSSION

Numerical simulations are carried out for the gas flow and heat transfer characteristics in a
resonator using the IMEX FDLBM introduced in Section 3. The compressible model adopted is
introduced in Section 2, and more details can be found in Reference [23]. In a resonator, as shown
in Figure 2, the oscillating flow is generated by a plane piston at the left end (x=0) with the
velocity l�sin(�t) and reflected by the other closed end (x= L=1.7018m). Here � is the circular
frequency. The resonator is filled with air under normal conditions and set as �0=1.165kg/m3,
T0=303K, 
=1.86×10−5 kg/(ms), R=287J/(kgK) and �=1.4. The sound speed is defined as
cs=√

�RT0. The fundamental resonant frequency of the tube is �=�cs/L . The frequency range
to be considered is in the neighborhood of �.

In simulations, the computational domain L×H is covered by a non-uniform mesh with
�x/�y= 1

2 of size Nx ×Ny . For convenience, in consideration of the periodicity of the stack in the
thermoacoustic refrigerator, which is the next effort of our study, the periodic boundary condition
is applied to the y-direction in this study as

fi,I,0= fi,I,Ny−1 at y=0 (15a)

fi,I,Ny = fi,I,1 at y=H (15b)

L

y

x

shock wave H

sin( )l tω ω

Figure 2. Schematic description of the resonator.
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This means the boundary layer effect is neglected in our simulation although a two-dimensional
physical model is considered. Solid walls of the resonator are treated to be adiabatic, and the
conditions imposed are as follows:

u1,0,J = l�sin(�t)

u2,0,J =0

T0,J =T1,J

p0,J =(4p1,J − p2,J )/3

�0,J = p0,J/RT0,J

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

at x=0 (16a)

u1,Nx ,J =0

u2,Nx ,J =0

TNx ,J =TNx−1,J

pNx ,J =(4pNx−1,J − pNx−2,J )/3

�Nx ,J = pNx ,J/RTNx ,J

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

at x= L (16b)

Macroscopic variables given in Equation (16) are used to update f eqi at the boundary nodes in the
x-direction. Based on this, the non-equilibrium extrapolation method [41] is applied to obtain the
unknown fi at the boundary nodes:

fi,0,J = f eqi,0,J +( fi,1,J − f eqi,1,J ) at x=0 (17a)

fi,Ny ,J = f eqi,Ny ,J
+( fi,Ny−1,J − f eqi,Ny−1,J ) at x= L (17b)

In Figure 3, a mesh refinement study is considered firstly. The velocity and pressure near the
closed end of the resonator (x/L=0.995) at �/�=1 are obtained on different meshes with the
mesh numbers Nx ×Ny =400×40, 600×60 and 800×80. The dimensionless time tcs/2L means
the ordinal number of the oscillation period. We denote that the limit cycle state of the gas column
has already been reached at tcs/2L=15 (see Figure 5(c)). As shown in Figure 3(a), there are
minor phase differences between the velocity variations on different meshes. This is because for
numerical stabilization, CCFL is set to be 1.894 with different time spacing steps on different
meshes. In other words, different meshes lead to different periods. It is also the reason why we
used the dimensionless time tcs/2L instead of physical time or time step. Moreover, the maximum
of the velocity with mesh Nx ×Ny =600×60 is close to that of Nx ×Ny =800×80, and both
of them are larger than that of Nx ×Ny =400×40. In Figure 3(b), the phase differences of the
pressure variations also exist, and the discrepancy between the amplitudes of the pressure is not
significant. Thus, it may be concluded that Nx ×Ny =600×60 is competent for the simulations
of this paper and is employed in the following computations.

Figure 4 gives a comparison of the pressure oscillation form, which is calculated at the closed
end (x/L=1.0) and �/�=1, with the results from Aganin et al.’s model A [7] and the experi-
mental data of Saenger and Hudson [2]. For l/L=0.00161, as shown in Figure 4(a), the difference
between the maximum and minimum pressure over a period in Aganin et al.’s model A is 28.6% [7],
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Figure 3. Mesh refinement study of the time-dependent (a) velocity and (b) pressure near the closed end
of the resonator (x/L=0.995) with adiabatic walls at �/�=1.

and 28.8% in our study. Good agreement between the numerical results with those using conven-
tional numerical methods is obtained. For l/L=0.00186, the difference between the maximum and
minimum pressure over a period in Saenger and Hudson’s experiment is 216mmHg/760mmHg

.=
28.4% [2], and 31.1% in our study. Small discrepancy between the numerical results and experi-
mental data is due to the boundary layer effect, which is not taken into account in our simulation.
Nevertheless, the feasibility of the IMEX FDLBM and relevant code are validated. Moreover,
periodic pulse-type jumps that indicate the propagation of the shock waves are captured clearly.
In the following computations, l/L is set to be 0.00186 unless otherwise mentioned.

Figure 5 presents the pressure near the closed end of the resonator (x/L=0.995) for five
frequencies in the neighborhood of �. It refers to the entire interval 0�tcs/2L�50 and provides an
idea of the overall processes. It can be observed that rapid increases in the oscillation amplitudes
occur at all frequencies presented over some initial periods. Then for the frequencies close to
� (�/�=0.97, 1.0 and 1.03), the systems reach their corresponding limit cycle states and the

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:853–872
DOI: 10.1002/fld



IMPLICIT–EXPLICIT FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD 863

14.5 15.0 15.5 16.0 16.5
0.8

0.9

1.0

1.1

1.2

1.3
 Reference [7]: l/L=0.00161
 This work:  l/L=0.00161
 This work: l/L=0.00186

p
/p

0

tc
s
/2L(a)

(b) 

l/L=0.00186

Figure 4. (a) Comparison of the numerical results in this study with Aganin et al.’s numerical results
[7]. (b) The experimental results of Saenger and Hudson [2]. The pressure is calculated at the closed
end (x/L=1.0). The values of l/L in References [7] and [2] are 0.00161 and 0.00186, respectively. Both

parameters are considered in the validation of our code.

envelopes of the oscillating pressure are smooth. When the frequencies are further away from
the resonant frequency (�/�=0.95 and 1.05), the envelopes of the oscillating pressure are saw
toothed, because of the beating produced by the frequency difference �−� [7]. The saw teeth at
�/�=0.95 point to the direction of the time, whereas at �/�=1.05 the direction is reversed.

More details of the oscillation waveforms of the pressure for different frequencies are presented
in Figure 6. Two intervals (30�tcs/2L�32 and 40�tcs/2L�42) are considered for comparison.
It can be seen from Figure 6 that the waveforms transform with the change in the frequencies.
Periodical pulse-type jumps are observed in pressure at �/�=1.0, which indicates the propagation
of a shock wave. When the frequencies depart from the resonance (�/�=0.97 and 1.03), the
shock waves are also numerically captured. The pre-resonant oscillation form (�/�=0.97) is
distinctive in that it is adjacent to the maximum over a period after a pulse-type jump; however,
the post-resonant oscillation form (�/�=1.03) has a maximum immediately after the jump. When
the frequencies are far away from the resonant frequency (�/�=0.95 and 1.05), the waveforms
are approximately sine waves with periodically slight jump. Moreover, the waveforms in two
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Figure 5. Time histories of the pressure near the closed end of the resonator (x/L=0.995) with adiabatic
walls for five frequencies in the neighborhood of �: (a) �/�=0.95; (b) �/�=0.97; (c) �/�=1.0;

(d) �/�=1.03; and (e) �/�=1.05.

intervals are almost in phase with each other when the frequencies are close to �, whereas when
the frequencies are far away from the resonant frequency (�/�=0.95 and 1.05) the waveforms
are not in phase.

Then, we focus on the gas oscillating patterns at the fundamental resonant frequency. Gas flow
and heat transfer characteristics under the limit cycle condition are studied. Figure 7 presents
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Figure 6. Pressure oscillation forms near the closed end of the resonator (x/L=0.995) in two intervals
(30�tcs/2L�32 and 40�tcs/2L�42) with adiabatic walls for five frequencies in the neighborhood of �:

(a) �/�=0.95; (b) �/�=0.97; (c) �/�=1.0; (d) �/�=1.03; and (e) �/�=1.05.

the temporal variations of the velocity, pressure and temperature at three locations (x/L=0.005,
0.5 and 0.995) along the x-direction of the resonator with adiabatic walls at �/�=1.0. From
Figure 7(a), it can be seen that the waveform of velocity at x/L=0.005 is almost sinusoidal with
the piston movement, and a sudden pulse-type change occurs when the shock wave travels through
this location. Waveforms of velocity at x/L=0.5 and 0.995 are also given. It can be observed
that the phase difference between the velocity at x/L=0.005 and 0.5 is about 90◦, and the phase
difference between the velocity at x/L=0.5 and 0.995 is also 90◦.
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Figure 7. Temporal variations of the (a) velocity, (b) pressure and (c) temperature at three locations along
the x-direction of the resonator with adiabatic walls at �/�=1.0.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:853–872
DOI: 10.1002/fld



IMPLICIT–EXPLICIT FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD 867

From Figure 7(b), it can be seen that the amplitude of the oscillating pressure at x/L=0.5
is smaller than that of the oscillating pressure at x/L=0.005 and 0.995. Moreover, the pressure
increases sharply at the same time of the velocity’s pulse-type change at the corresponding location.
In comparison with Figures 7(a) and (b), the phase difference between the velocity and pressure
at the same location is 90◦ (see the lines of x/L=0.5 at Figures 7(a) and (b) for a legible
observation). It should be noted that because of the symmetry of geometry, two wave crests of the
pressure in one oscillation period are observed in x/L=0.5. Corresponding temporal variations
of the temperature are presented in Figure 7(c). It is shown that the characteristics of the temporal
oscillating temperature are similar to those of the oscillating pressure. Furthermore, in comparison
with Figures 7(b) and (c), the pressure and temperature are in phase with each other. In consideration
of the relation between pressure, temperature and density, which is described as the state equation,
we denote that the density and pressure are also in phase with each other. In addition, similar
phenomena of the temporal velocity, pressure and temperature are presented in Figures 3–5 for
adiabatic walls in Reference [9].

Figure 8 presents the fast Fourier transform of the pressure signal at the location of x/L=0.995
under the fundamental resonant frequency. Pa is the amplitude of the oscillating pressure. The
existence of the non-linear acoustic effect can be observed clearly from Figure 8. Although the
main component of the pressure signal is fundamental, the second and other higher harmonic ones
are also obvious.

Figure 9 presents the distributions of the velocity and density along the x-direction of the
resonator at different times of a period at �/�=1.0. It is observed that shock wave travels back
and forth along the x-direction of the resonator. Figure 9(a) indicates that the wave nodes of the
oscillating velocity are fixed near the walls and the wave loops are unfixed along the resonator.
Figure 9(b) refers to the half period 49.5< tcs/2L<50. It indicates that both the wave nodes
and loops of the oscillating density (or pressure) are unfixed. Furthermore, we denote that during
the other half period (49<tcs/2L<49.5), the distributions of the density (or pressure) are mirror-
symmetrical with respect to x/L=0.5.

Figure 10(a) shows the time dependence of the temperature at the middle point of the resonator
(x/L=0.50) in two intervals (19�tcs/2L�20 and 49�tcs/2L�50) with adiabatic walls at
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Figure 8. Fast Fourier transform of the pressure at the location of x/L=0.995 under the fundamental
resonant frequency. Pa is the amplitude of the oscillating pressure.
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Figure 9. Development of the (a) velocity and (b) density profiles along the x-direction of the resonator
with adiabatic walls at �/�=1.0.

�/�=1.0. It can be seen that the gas temperature increases with the time. A more detailed descrip-
tion about the time-dependent temperatures can be found in Figure 10(b), where the temperatures
presented were averaged over one oscillation period and three locations along the x-direction
of the resonator are considered. It is seen that, after some initial periods, the period averaging
temperatures increase linearly with the increase in the time, because the state of the gas column
is essentially periodically unsteady with adiabatic walls.

Finally, we denote that, in this study, the shock waves in the resonator are numerical captured
more legibly than those in our previous study with standard LBM [14]. As the gas oscillation
in the resonator is compressible essentially, an LBM model for viscid compressible NS flows
can treat such a problem better than the incompressible model in the standard LBM. The high-
order schemes for the space and time discretization in the IMEX FDLBM also lead to good
performance in capturing the shock waves. Moreover, in consideration of 
=�RT � in Equation (6)
and the macroscopic parameters given as above, � is at the order of 10−10 s, and much smaller
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Figure 10. (a) Time dependence of the temperature at the middle point of the resonator (x/L=0.50)
in two intervals (19�tcs/2L�20 and 49�tcs/2L�50) and (b) period averaging temperatures at three

locations along the x-direction of the resonator with adiabatic walls at �/�=1.0.

than the period of the oscillating gas, which is about 0.01 s. For Nx ×Ny =600×60 used in
our simulations, �t=�×105/3 is set with CCFL=1.894 instead of �t=�/10, which is needed
for unsteady flow in the compressible NS model introduced in Section 2. As a result, with the
IMEX FDLBM, the computational convergence rate of this stiff problem can be significantly
improved, and the convergence rate is accelerated to 3.33×105 times in our simulations. This study
leads to the feasibility to simulate fluid flow and heat transfer in a more complex thermoacoustic
engine using the new progresses in the LBM field. In particular, numerical studying on the
self-excited onset process of a thermoacoustic prime mover named thermoacoustic instability is
underway in our group. The non-linear acoustic effect and space and time multi-scale effects
in such a phenomenon make the simulation very difficult, and relevant results will be presented
elsewhere.
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5. CONCLUSION

In this paper, the IMEX FDLBM is adopted to simulate the gas oscillating patterns in a resonator
with adiabatic walls. Shock waves are numerically captured when the oscillating plane piston is at
the resonant frequency or slightly off-resonant frequencies. Waveforms of the oscillating pressure
at different frequencies are contrasted with each other. Specially, the gas flow and heat transfer
characteristics at resonant frequency are numerical studied in detail. Temporal variations of the
velocity, pressure and temperature at various locations of the resonator at resonant frequency are
presented. Phase differences between the oscillating velocity and pressure is 90◦, whereas the
pressure, temperature and density are in phase with each other. The wave nodes of the oscillating
velocity are fixed near the walls and the wave loops are unfixed along the resonator, whereas both
the wave nodes and loops of the oscillating density (or pressure) are unfixed. Since the state of
the gas column is essentially periodically unsteady with adiabatic walls, it is observed that period
averaging temperatures increase linearly with the increase in the time after some initial periods.

Numerical results obtained in this study agree quantitatively well with experimental data avail-
able and those using conventional numerical methods. Moreover, with the IMEX FDLBM, the
computational convergence rate can be significantly improved compared with the previous FDLBM
and the standard LBM. This is a part of an effort to better understand the fundamentals of the
thermoacoustic phenomena with the recent progresses of the LBM. It is proved that the LBM can
be used in the thermoacoustic field and obtain satisfied quantitative results. The IMEX FDLBM
used here is now being employed for ongoing study on simulating the non-linear thermoacoustic
instabilities in a thermoacoustic prime mover.
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